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a b s t r a c t

Due to the high order spatial derivatives and stiff reactions, severe temporal stability con-
straints on the time step are generally required when developing numerical methods for
solving high order partial differential equations. Implicit integration method (IIF) method
along with its compact form (cIIF), which treats spatial derivatives exactly and reaction
terms implicitly, provides excellent stability properties with good efficiency by decoupling
the treatment of reaction and spatial derivatives. One major challenge for IIF is storage
and calculation of the potential dense exponential matrices of the sparse discretization
matrices resulted from the linear differential operators. The compact representation for
IIF (cIIF) was introduced to save the computational cost and storage for this purpose.
Another challenge is finding the matrix of high order space discretization, especially near
the boundaries. In this paper, we extend IIF method to high order discretization for spatial
derivatives through an example of reaction diffusion equation with fourth order accuracy,
while the computational cost and storage are similar to the general second order cIIF
method. The method can also be efficiently applied to deal with other types of partial
differential equations with both homogeneous and inhomogeneous boundary conditions.
Direct numerical simulations demonstrate the efficiency and accuracy of the approach.

1. Introduction

LetΩ be an open rectangular domain inRd and a final time T > 0. In this paper, we consider solving a system of reaction–
diffusion equations:{

∂u
∂t

= D∆u + f (u), x ∈ Ω, t ∈ (0, T ),
u|t=0 = u0, x ∈ Ω,

(1)

where D > 0 is the diffusion coefficient. Different boundary conditions such as the homogeneous and inhomogeneous
Dirichlet and Neumann boundary conditions will all be studied in this paper. Due to severe time step constraints, one of the
numerical difficulties to handle such equations is to efficiently solve the diffusion term ∆u coupled with the stiff nonlinear
reaction term f (u). In general, the time step relies heavily on the stiffness of reactions and treatment of the high order
derivatives. Integration factor (IF) or exponential differencing time (ETD) methods are popular methods for temporal partial
differential equations (PDEs) [1–7].

To efficiently store and compute the exponential matrices in IIF for two and three dimensional systems in Cartesian
coordinates with regular meshes, a class of compact implicit integration factor (cIIF) method [8] was introduced that has
the same stability properties as the original IIF [9], but with significant improvement on storage and computational savings
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for high spatial dimensions. In order to efficiently handle the complex domains with circular or spherical symmetry, cIIF
methods were generalized to curvilinear coordinates through examples of polar and spherical coordinates [10]. One can
also apply cIIF to stiff reactions and diffusions while using other specialized hyperbolic solvers (e.g WENOmethods [11,12])
for convection terms to solve reaction–diffusion–convection equations efficiently [13–16].

The compact form of integration factormethodwas often very hard to be directly applied to deal with problems involving
cross derivatives. Recently in [17], the compact integration factor (cIF) method was applied to solve a family of semilinear
fourth-order parabolic equations, in which the bi-Laplace operator is explicitly handled. The proposed method can also deal
with not only stiff nonlinear reaction terms, but also various types of homogeneous or inhomogeneous boundary conditions,
while how to deal with inhomogeneous boundary conditions with cIF was not addressed before. Meanwhile, the IF method
was designed and tested primarily for reaction–diffusion equations in previous studies. More recently in [18], cIF method
was extended to solve the dissipative hydrodynamic equation system for incompressible fluid mixture flows with more
complex mathematical structures. The IF strategy is applied after the system is discretized in space into a large differential
and algebraic equation (DAE) system,which respects the total energy dissipation. The computational cost can be dramatically
reduced through the use of discrete Fourier transform (DFT) by taking advantage of the circular structure of discretized
matrices. The proposed approach has exhibited great numerical stability and energy dissipation property.

One challenge for integration factor (IF)method is to find thematrix of high order space discretization, especially near the
boundaries. All previous studies have mainly focused on second order discretization in space. In this paper, we generalize IF
methods for efficiently handling reaction–diffusion systems with high order accuracy for various inhomogeneous boundary
conditions. In this approach, we use standard fourth order central finite differences for spatial discretization coupled with
compact implicit integration factor methods for time discretization. In two and three dimensional systems, the discretized
matrices arising from a compact representation of the diffusion operator need to be diagonalized once and pre-calculated
before each time step iteration. This new approach has similar stability properties as the general second order cIIF along
with a similar computational cost. Thus, the method is particularly suitable for high order partial differential equations in
high dimensional systems with high order accuracy for both homogeneous and inhomogeneous boundary conditions.

To study the accuracy and efficiency, we first derive and implement the IF method to efficiently solve reaction–
diffusion systems with inhomogeneous Neumann boundary conditions. Such approach can be similarly extended to all
other inhomogeneous boundary conditions. The direct numerical simulations exhibit the excellent performance of the
proposed approach through extensive numerical benchmark tests with linear and nonlinear equations. The rest of the paper
is organized as follows. The generalized IF method for reaction–diffusion systems with inhomogeneous Neumann boundary
conditions is derived in Section 2, and numerical tests with linear and nonlinear cases are shown in Section 3. Finally a brief
conclusion is drawn.

2. High Order integration factor (IF) method with inhomogeneous Boundary Conditions

One-Dimension
First we consider a one-dimensional reaction–diffusion equation with inhomogeneous Neumann boundary condition,⎧⎪⎨⎪⎩

∂u
∂t

= D
∂2u
∂x2

+ F(u), x ∈ Ω, t ∈ [0, T ]

∂u
∂x

(t, x) = g(t, x) x ∈ ∂Ω, t ∈ [0, T ]

, (2)

where Ω = [a, b]. We first discretize the spatial domain by the mesh: xi = a + i × h, where h = (b − a)/N and 0 ≤ i ≤ N .
Using the fourth order central difference discretization on the diffusion, we obtain a system of nonlinear ODEs

dui

dt
= D

(
−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12h2

)
+ F(ui) + G. (3)

Next we define vectors U and G and a matrix A by

U = (u0 · · · ui · · · uN )T(N+1)×1, (4)

G =
D
h2 ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
17g(t, x0)

6
11g(t, x0)

48
0
...

0

−
11g(t, xN )

48
17g(t, xN )

6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(N+1)×1

, (5)
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and

A =
D

12h2 ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
215
6

32 12 −
32
3

5
2

803
48

−31
57
4

1
3

−
5
16

−1 16 −30 16 −1
− 1 16 −30 16 −1

. . .
. . .

. . .
. . .

. . .

−1 16 −30 16 −1

−
5
16

1
3

57
4

−31
803
48

5
2

−
32
3

12 32 −
215
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(N+1)×(N+1)

(6)

In terms of these vectors and matrix, the semi-discretized form (3) becomes

dU
dt

= AU + F(U) + G. (7)

To apply the integration factor technique to the compact discretization form (7), we multiply (7) by the exponential
matrix e−At on the left to obtain

d(e−AtU)
dt

= e−AtF(U) + e−AtG. (8)

Integration of (8) over one time step from tn to tn+1 ≡ tn + ∆t , where ∆t is the time step, leads to

Un+1 = eA∆tUn + eA∆t
(∫ ∆t

0
e−AτF(U(tn + τ ))dτ +

∫ ∆t

0
e−AτG(tn + τ )dτ

)
. (9)

As discussed in [17,19], to evaluate the integral resulting from the inhomogeneous boundary terms∫ ∆t

0
e−AτG(tn + τ )dτ ,

we need to be careful since G(tn+τ ) contains entrieswhich decaywith highly different speeds along the time, and it involves
the factors of 1/h2 which could quickly amplify errors arising from the time discretization, thus causing severe numerical
instability. To overcome this difficulty, wewill apply an elegant approach proposed in [17,19], which is describedwith details
in the following.

To construct a scheme of rth order truncation error, we approximate the integrands in (9),

H1(τ ) ≡ e−AτF(U(tn + τ )), H2(τ ) ≡ G(tn + τ ),

using a (r − 1)th order Lagrange polynomial at a set of interpolation points tn+1, tn, . . . , tn+2−r :

P1(τ ) ≡

r−2∑
j=−1

ejA∆tF(Un−j)pj(τ ), P2(τ ) ≡

r−2∑
j=−1

G(tn − j∆t)pj(τ ), 0 ≤ τ ≤ ∆t,

where

pj(τ ) =

r−2∏
k=−1,k̸=j

τ + k∆t
(k − j)∆t

. (10)

In terms of P1(τ ) and P2(τ )(9) takes the form,

Un+1 = eA∆tUn + eA∆t
(∫ ∆t

0
P1(τ )dτ +

∫ ∆t

0
e−AτP2(τ )dτ

)
. (11)

So the new rth order implicit schemes are

Un+1 = eA∆tUn + ∆t

⎛⎝α1F(Un+1) +

r−2∑
j=0

α−je(j+1)A∆tF(Un−j) + eA∆t
r−2∑
j=−1

β−jG(tn − j∆t)

⎞⎠ , (12)
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Table 1
Values of α−j in (13) up to order four.

r α1 α0 α−1 α−2

1 1 0 0 0

2 1
2

1
2 0 0

3 5
12

2
3

−1
12 0

4 9
24

19
24

−5
24

1
24

Table 2
Values of β−j in (13) up to order four where ξk are defined in (14).

r β1 β0 β−1 β−2

1 ξ0 0 0 0

2 ξ1 −ξ1 + ξ0 0 0

3 1
2 ξ2 +

1
2 ξ1 −ξ2 + ξ0

1
2 ξ2 −

1
2 ξ1 0

4 1
6 ξ3 +

1
2 ξ2 +

1
3 ξ1 −

1
2 ξ3 − ξ2 +

1
2 ξ1 + ξ0

1
2 ξ3 +

1
2 ξ2 − ξ1 −

1
6 ξ3 +

1
6 ξ1

where α1, α0, α−1, . . . , α−r+2 and β1, β0, β−1, . . . , β−r+2 are coefficients calculated from the integrals of the polynomials P1(τ )
and P2(τ ), respectively,

α−j =
1

∆t

∫ ∆t

0

r−2∏
k=−1,k̸=j

τ + k∆t
(k − j)∆t

dτ , β−j =
1

∆t

∫ ∆t

0
e−Aτ

r−2∏
k=−1,k̸=j

τ + k∆t
(k − j)∆t

dτ , −1 ≤ j ≤ r − 2. (13)

In Table 1, the values of the coefficients α−j for schemes of order up to four are listed.
Define the matrices

ξ0 = A−1
(

1
∆t

I −
1

∆t
e−A∆t

)
,

ξk = A−1
(

k
∆tk+1 ξk−1 −

1
∆t

e−A∆t
)

, k ≥ 1. (14)

Then the coefficients β−j for schemes of order up to four are listed in Table 2.

Remark 1. Even though the integration factor method are derived in the context of inhomogeneous Neumann boundary
conditions, it can be similarly extended to inhomogeneous Dirichlet boundary conditions.

Two-Dimensions
Now we consider a two-dimensional reaction–diffusion equation with inhomogeneous Neumann boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= D(
∂2u
∂x2

+
∂2u
∂y2

) + F(u), (x, y) ∈ Ω, t ∈ [0, T ]

∂u
∂x

(t, x, y) = g1(t, x, y) (x, y) ∈ ∂Ω, t ∈ [0, T ]

∂u
∂y

(t, x, y) = g2(t, x, y) (x, y) ∈ ∂Ω, t ∈ [0, T ]

, (15)

where Ω = [a, b] × [c, d]. We first discretize the spatial domain by the mesh: (xi, yj) = (a + i × hx, c + j × hy), where
hx = (b − a)/Nx, hy = (d − c)/Ny, and 0 ≤ i ≤ Nx and 0 ≤ j ≤ Nj. Using the fourth order central difference discretization on
the diffusion, we obtain a system of nonlinear ODEs

dui,j

dt
= D

(
−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12h2
x

(16)

+
−ui,j+2 + 16ui,j+1 − 30ui,j + 16ui,j−1 − ui,j−2

12h2
y

)
+ F(ui,j) + G1 + G2.

Next we define matrices U, G1, G2, A, and B by

U =

⎛⎜⎜⎝
u0,0 u0,1 · · · u0,Ny
u1,0 u1,1 · · · u1,Ny
...

...
. . .

...

uNx,0 uNx,1 · · · uNx,Ny

⎞⎟⎟⎠
(Nx+1)×(Ny+1)

, (17)
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G1 =
D
h

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
17g1(t, x0, y0)

6
−

17g1(t, x0, y1)
6

· · · −
17g1(t, x0, yN )

6
11g1(t, x0, y0)

48
11g1(t, x0, y1)

48
· · ·

11g1(t, x0, yN )
48

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

−
11g1(t, xN , y0)

48
−

11g1(t, xN , y1)
48

· · · −
11g1(t, xN , yN )

48
17g1(t, xN , y0)

6
17g1(t, xN , y1)

6
· · ·

17g1(t, xN , yN )
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Nx+1)×(Ny+1)

, (18)

G2 =
D
h

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
17g1(t, x0, y0)

6
11g1(t, x0, y0)

48
0 · · · 0 −

11g1(t, x0, yN )
48

17g1(t, x0, yN )
6

−
17g1(t, x1, y0)

6
11g1(t, x1, y0)

48
0 · · · 0 −

11g1(t, x1, yN )
48

17g1(t, x1, yN )
6

...
...

...
. . .

...
...

...

−
17g1(t, xN , y0)

6
11g1(t, xN , y0)

48
0 · · · 0 −

11g1(t, xN , yN )
48

17g1(t, xN , y0)
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Nx+1)×(Ny+1)

,(19)

A =
D

12h2
x

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
215
6

32 12 −
32
3

5
2

803
48

−31
57
4

1
3

−
5
16

−1 16 −30 16 −1
− 1 16 −30 16 −1

. . .
. . .

. . .
. . .

. . .

−1 16 −30 16 −1

−
5
16

1
3

57
4

−31
803
48

5
2

−
32
3

12 32 −
215
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Nx+1)×(Nx+1)

, (20)

and

B =
D

12h2
y

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
215
6

803
48

−1
32 −31 16 −1

12
57
4

−30 16
. . .

−
32
3

1
3

16 −30
. . . −1 −

5
16

5
2

5
2

−
5
16

−1 16
. . . 16

1
3

−
32
3

−1
. . . −30

57
4

12

. . . 16 −31 32

−1
803
48

−
215
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Ny+1)×(Ny+1)

. (21)

In terms of these matrices, the semi-discretized form (17) becomes
dU
dt

= AU + UB + F(U) + G1 + G2. (22)

Since A and B can be diagonalized,

A = PADAP−1
A B = PBDBP−1

B .
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Multiplying (22) on the left by P−1
A and on the right by PB yields

d(P−1
A UPB)
dt

= DAP−1
A UPB + P−1

A UPBDB + P−1
A F(U)PB + P−1

A G1PB + P−1
A G2PB. (23)

Let

V = P−1
A UPB, F̃ = P−1

A FPB, G̃1 = P−1
A G1PB, G̃2 = P−1

A G2PB.

Then (23) becomes
dV
dt

= DAV + VDB + F̃(PAVP−1
B ) + G̃1 + G̃2. (24)

To apply the integration factor technique to the compact discretization form (24), we multiply (24) by the exponential
matrix e−DAt on the left, and e−DBt on the right and integrate over one time step from tn to tn+1 ≡ tn + ∆t , where ∆t is the
time step. This leads to

Vn+1 = eDA∆tVneDB∆t
+ eDA∆t

(∫ ∆t

0
e−DAτ F̃(PAV(tn + τ )P−1

B )e−DBτdτ

+

∫ ∆t

0
e−DAτ G̃1(t+τ )e−DBτdτ +

∫ ∆t

0
e−DAτ G̃2(tn + τ )e−DBτdτ

)
eDB∆t . (25)

Similar to the one-dimensional case, to construct a scheme of rth order truncation error, we approximate the integrands
in (25) using a (r − 1)th order Lagrange polynomial at a set of interpolation points tn+1, tn, . . . , tn+2−r :

P1(τ ) ≡

r−2∑
j=−1

ejDA∆t F̃(PAVn−jP−1
B )ejDD∆tpj(τ ),

P2(τ ) ≡

r−2∑
j=−1

G̃1(tn − j∆t)pj(τ ), P3(τ ) ≡

r−2∑
j=−1

G̃2(tn − j∆t)pj(τ ), 0 ≤ τ ≤ ∆t, (26)

where

pj(τ ) =

r−2∏
k=−1,k̸=j

τ + k∆t
(k − j)∆t

. (27)

In terms of Pi(τ ), i = 1, 2, 3, (25) takes the form,

Vn+1 = eDA∆tVneDB∆t
+ eDA∆t

(∫ ∆t

0
P1(τ )dτ

+

∫ ∆t

0
e−DAτP2(τ )e−DBτdτ +

∫ ∆t

0
e−DAτP3(τ )e−DBτdτ

)
eDB∆t . (28)

Let DA = diag(da0, d
a
1, . . . , d

a
Nx
) and DB = diag(db0, d

b
1, . . . , d

b
Ny
). Note that multiplication of diagonal matrices on the left and

right becomes component-wise matrix multiplication of the form

(DAGDB)i,j = dai (G)i,jd
b
j . (29)

So the second integration in (28) can be done component-wise. Now the new rth order implicit schemes are

Vn+1 = eDA∆tVneDB∆t
+ ∆t

⎛⎝α1F̃(PAVn+1P−1
B ) +

r−2∑
j=0

α−je(j+1)DA∆t F̃(PAVn−jP−1
B )e(j+1)DB∆t

⎞⎠
+ ∆teDA∆t

⎛⎝ r−2∑
j=−1

β−j ◦ G̃1(tn − j∆t) +

r−2∑
j=−1

β−j ◦ G̃2(tn − j∆t)

⎞⎠ eDB∆t , (30)

where ‘‘◦’’ denotes component-wisematrixmultiplication, andα1,α0,α−1, . . . ,α−r+2 andβ1,β0,β−1, . . . ,β−r+2 are coefficients
calculated from the integrals of the polynomials,

α−j =
1

∆t

∫ ∆t

0

r−2∏
k=−1,k̸=j

τ + k∆t
(k − j)∆t

dτ

β−j =
1

∆t

∫ ∆t

0
e−(DA+DB)τ

r−2∏
k=−1,k̸=j

τ + k∆t
(k − j)∆t

dτ , −1 ≤ j ≤ r − 2. (31)
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In Table 1, the values of the coefficients α−j for schemes of order up to four are listed. Define the matrices

(ξ0)i,j =
1

dai + dbj

(
1

∆t
−

1
∆t

e−(dai +dbj )∆t
)

(ξk)i,j =
1

dai + dbj

(
k

∆tk+1 (ξk−1)i,j −
1

∆t
e−(dai +dbj )∆t

)
k ≥ 1. (32)

Then the coefficients β−j for schemes of order up to four are listed in Table 2.
From here the solution of U can be recovered by U = PAVP−1

B .

Remark 2. For the cases when A or B cannot be diagonalized, the terms from inhomogeneous boundary condition can be
incorporated into the nonlinear term F . For instance, Eq. (22) can be written as

dU
dt

= AU + UB + F̄(U). (33)

where F̄(U) = F(U) + G1 + G2. We can follow the same ideas for compact implicit integration factor (cIIF) method as
discussed in [8]. For instance, the second order cIIF2 method is given by

Un+1 = eA∆tUneB∆t
+

∆t
2

(
F̄(Un) + F̄(Un+1)

)
.

Three-Dimensions
Now we consider a three-dimensional reaction–diffusion equation with Neumann boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= D∆u + F(u), (x, y, z) ∈ Ω, t ∈ [0, T ]

∂u
∂x

(t, x, y, z) = g1(t, x, y, z) (x, y, z) ∈ ∂Ω, t ∈ [0, T ]

∂u
∂y

(t, x, y, z) = g2(t, x, y, z) (x, y, z) ∈ ∂Ω, t ∈ [0, T ]

∂u
∂z

(t, x, y, z) = g3(t, x, y, z) (x, y, z) ∈ ∂Ω, t ∈ [0, T ]

(34)

whereΩ = [al, au]×[bl, bu]×[cl, cu]. LetNx,Ny,Nz denote the number of spatial grid points in x, y, z-direction, respectively,
hx, hy, hz be the grid size, and ui,j,k represent the approximate solution at the grid point (xi, yj, zk), 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny,
and 0 ≤ k ≤ Nz . A fourth order central difference discretization on the Laplacian operator yields

dui,j,k

dt
= D

(
−ui+2,j,k + 16ui+1,j,k − 30ui,j,k + 16ui−1,j,k − ui−2,j,k

12h2
x

+
−ui,j+2,k + 16ui,j+1,k − 30ui,j,k + 16ui,j−1,k − ui,j−2,k

12h2
y

+
−ui,j,k+2 + 16ui,j,k+1 − 30ui,j,k + 16ui,j,k−1 − ui,j,k−2

12h2
z

)
+ F(ui,j,k) + Gi,j,k (35)

Define Ax =
D
h2x
A(Nx+1)×(Nx+1), Ay =

D
h2y
A(Ny+1)×(Ny+1), and Az =

D
h2z
A(Nz+1)×(Nz+1), where

AP×P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
215
6

32 12 −
32
3

5
2

803
48

−31
57
4

1
3

−
5
16

−1 16 −30 16 −1
− 1 16 −30 16 −1

. . .
. . .

. . .
. . .

. . .

−1 16 −30 16 −1

−
5
16

1
3

57
4

−31
803
48

5
2

−
32
3

12 32 −
215
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P×P

.
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Then (35) has the following compact representation

Ut =

⎛⎝ Nx∑
l=0

(Ax)i,lul,j,k +

Ny∑
l=0

(Ay)j,lui,l,k +

Nz∑
l=0

(Az)k,lui,j,l

⎞⎠ + F(U) + G, (36)

where U = (ui,j,k), F(U) = (F(ui,j,k)), and G = (Gi,j,k). G is defined as

G0,j,k =
D
h

×

⎛⎜⎜⎜⎜⎝
−

17g1(t, x0, y0, z0)
6

· · · −
17g1(t, x0, y0, zNz )

6
...

. . .
...

−
17g1(t, x0, yNy , z0)

6
· · · −

17g1(t, x0, yNy , zNz )
6

⎞⎟⎟⎟⎟⎠
(Ny+1)×(Nz+1)

,

G1,j,k =
D
h

×

⎛⎜⎜⎜⎜⎝
11g1(t, x0, y0, z0)

48
· · ·

11g1(t, x0, y0, zNz )
48

...
. . .

...
11g1(t, x0, yNy , z0)

48
· · ·

11g1(t, x0, yNy , zNz )
48

⎞⎟⎟⎟⎟⎠
(Ny+1)×(Nz+1)

,

GNx−1,j,k =
D
h

×

⎛⎜⎜⎜⎜⎝
−

11g1(t, xN , y0, z0)
48

· · · −
11g1(t, xN , y0, zNz )

48
...

. . .
...

−
11g1(t, xN , yNy , z0)

48
· · · −

11g1(t, xN , yNy , zNz )
48

⎞⎟⎟⎟⎟⎠
(Ny+1)×(Nz+1)

,

GNx,j,k =
D
h

×

⎛⎜⎜⎜⎜⎝
17g1(t, xN , y0, z0)

6
· · ·

17g1(t, xN , y0, zNz )
6

...
. . .

...
17g1(t, xN , yNy , z0)

6
· · ·

17g1(t, xN , yNy , zNz )
6

⎞⎟⎟⎟⎟⎠
(Ny+1)×(Nz+1)

.

Gi,0,k, Gi,1,k, Gi,Ny−1,k, Gi,Ny,k, and Gi,j,0, Gi,j,1, Gi,j,Nz−1, Gi,j,Nz are similarly defined. For i ̸= 0, 1,Nx − 1,Nx, j ̸= 0, 1,Ny − 1,Ny,
and k ̸= 0, 1,Nz − 1,Nz , Gi,j,k = 0.

The three summation terms in (36) are similar to the two vector-matrix multiplications in the two-dimensional case in
(22). In addition to a left multiplication and a right multiplication in (22), there is a ‘‘middle’’ multiplication in (36).

Since Aγ can be diagonalized,

Aγ = PγDγ P−1
γ , γ = x, y, z. (37)

Define an operator D by

(DU)i,j,k =

Nz∑
f=0

Ny∑
e=0

Nx∑
d=0

(P−1
z )k,f (P−1

y )j,e(P−1
x )i,dud,e,f . (38)

Applying D to the first term of (36) yields

(DUt )1st term =

Nz∑
f=0

Ny∑
e=0

Nx∑
d=0

(P−1
z )k,f (P−1

y )j,e(P−1
x )i,d

Nx∑
l=0

(PxDxP−1
x )d,lul,e,f

=

Nz∑
f=0

Ny∑
e=0

Nx∑
l=0

(P−1
z )k,f (P−1

y )j,e
Nx∑
d=0

(P−1
x )i,d(PxDxP−1

x )d,lul,e,f

=

Nz∑
f=0

Ny∑
e=0

Nx∑
l=0

(P−1
z )k,f (P−1

y )j,e(DxP−1
x )i,lul,e,f

=

Nz∑
f=0

Ny∑
e=0

Nx∑
l=0

(P−1
z )k,f (P−1

y )j,e
Nx∑
a=0

(Dx)i,a(P−1
x )a,lul,e,f
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=

Nx∑
a=0

(Dx)i,a
Nz∑
f=0

Ny∑
e=0

Nx∑
l=0

(P−1
z )k,f (P−1

y )j,e(P−1
x )a,lul,e,f

=

Nx∑
a=0

(Dx)i,a(DU)a,j,k. (39)

Make the following substitutions,

V = DU, F̃ = DF, G̃ = DG.

Then applying D to (36) yields

Vt =

⎛⎝ Nx∑
l=0

(Dx)i,lvl,j,k +

Ny∑
l=0

(Dy)j,lvi,l,k +

Nz∑
l=0

(Dz)k,lvi,j,l

⎞⎠ + F̃(D−1V) + G̃ (40)

Define an operator L(t) by

(L(t)U)i,j,k =

Nz∑
n=0

Ny∑
m=0

Nx∑
l=0

(e−Dz t )k,n(e−Dyt )j,m(e−Dxt )i,lul,m,n. (41)

Taking derivatives of (41) yields

dL(t)U
dt

= L(t)

⎛⎝Ut −

⎛⎝ Nx∑
l=0

(Dx)i,lul,j,k +

Ny∑
l=0

(Dy)j,lui,l,k +

Nz∑
l=0

(Dz)k,lui,j,l

⎞⎠⎞⎠ . (42)

Letting L(t) act on both sides of (40) and using (42), we obtain

dL(t)V
dt

= L(t)F̃(D−1V) + L(t)G̃. (43)

Integrating (43) over one time step from tn to tn+1 and using a transformation s = tn + τ for the integration, we obtain

L(tn+1)Vn+1 = L(tn)Vn + L(tn)
∫ ∆t

0
L(τ )F̃(D−1V(tn + τ ))dτ + L(tn)

∫ ∆t

0
L(τ )G̃(tn + τ )dτ . (44)

Applying L(−tn+1) on both sides of (44) yields

Vn+1 = L(−∆t)Vn + L(−∆t)
∫ ∆t

0
L(τ )F̃(D−1V(tn + τ ))dτ + L(−∆t)

∫ ∆t

0
L(τ )G̃(tn + τ )(τ )dτ . (45)

To derive (45), we have used two identities:

L(0)V = V and L(−rt)L(st)V = L((s − r)t)V (46)

for any two scalars r and s. Both of these can be easily proved based on the definition of L.
Similar to one and two dimensional cases, to construct a scheme of rth order truncation error, we approximate the

integrands in (45) using a (r − 1)th order Lagrange polynomial at a set of interpolation points tn+1, tn, . . . , tn+2−r :

P1(τ ) ≡

r−2∑
j=−1

L(−j∆t)F̃(D−1Vn−j)pj(τ ), P2(τ ) ≡

r−2∑
j=−1

G̃(tn − j∆t)pj(τ ), 0 ≤ τ ≤ ∆t, (47)

where

pj(τ ) =

r−2∏
k=−1,k̸=j

τ + k∆t
(k − j)∆t

. (48)

In terms of Pi(τ ), i = 1,2, (45) takes the form,

Vn+1 = L(−∆t)Vn + L(−∆t)
(∫ ∆t

0
P1(τ )dτ +

∫ ∆t

0
L(τ )P2(τ )dτ

)
. (49)
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So the new rth order implicit schemes are

Vn+1 = L(−∆t)Vn + ∆t

⎛⎝α1F̃(D−1Vn+1) +

r−2∑
j=0

α−jL(−(j + 1)∆t)F̃(D−1Vn−j)

+ L(−∆t)
r−2∑
j=−1

β−j ◦ G̃(tn − j∆t)

⎞⎠ , (50)

where ◦ denotes component-wise multiplication of the three-dimensional matrices, and α1, α0, α−1, . . . , α−r+2 and β1, β0,
β−1, . . . , β−r+2 are coefficients calculated from the integrals of the polynomials,

α−j =
1

∆t

∫ ∆t

0

r−2∏
k=−1,k̸=j

τ + k∆t
(k − j)∆t

dτ

β−j =
1

∆t

∫ ∆t

0
L(τ )

r−2∏
k=−1,k̸=j

τ + k∆t
(k − j)∆t

dτ , −1 ≤ j ≤ r − 2. (51)

In Table 1, the values of the coefficients α−j for schemes of order up to four are listed. Define the matrices

(ξ0)i,j,k =
1

dxi + dyj + dzk

(
1

∆t
−

1
∆t

e−(dxi +dyj +dzk)∆t
)

(ξγ )i,j,k =
1

dxi + dyj + dzk

(
γ

∆tγ+1 (ξγ−1)i,j,k −
1

∆t
e−(dxi +dyj +dzk)∆t

)
, γ ≥ 1. (52)

Then the coefficients β−j for schemes of order up to four are listed in Table 2.
From here U can be recovered by U = D−1V, where

(D−1U)i,j,k =

Nz∑
f=0

Ny∑
e=0

Nx∑
d=0

(Pz)k,f (Py)j,e(Px)i,dud,e,f . (53)

Remark 3. The scheme (50) has a form similar to the one- and two-dimensional case. The evaluation of the nonlinear term
F at tn+1 is still local and decoupled from the global diffusion term such that a nonlinear system of the size F needs to be
solved at each spatial grid point. Such approach can also be similarly extended to systems with any high spatial dimensions.

3. Numerical examples

To study the efficacy and accuracy of the fourth order compact implicit integration factor (cIIF) method, we will
implement it on two- and three-dimensional systems. We test it on examples with either homogeneous or inhomogeneous
boundary conditions for both linear and nonlinear systems. In the calculation, the exponential of the square matrix is
computed using ‘‘expm’’ of MATLAB, which uses a scaling and squaring algorithm with a Pade approximation.

Because the matrix exponentials depend only on the spatial grid size, the time step, and diffusion coefficient, during the
entire temporal updating, they only need to be calculated once initially for a fixed numerical resolution. The local nonlinear
systems resulting from cIIF are solved iteratively using Newton’s method.

In all examples, the cIIF scheme is implemented with fourth order in space and second order in time. It is implemented
in MATLAB up to T = 1 at which the L∞ difference between the numerical solution and the exact solution is measured.
For the cases when the exact solution is not given, we take the numerical solution with relatively fine mesh as the ‘‘exact’’
solution. We set hx = hy for the two-dimensional examples and hx = hy = hz for the three-dimensional examples. The
inhomogeneous boundary condition algorithm has a higher requirement on the space to time step ratio, h

∆t , for stability
than the homogeneous boundary condition algorithm. So we use a smaller time step for the inhomogeneous examples. The
scheme is executed on a PC laptopwith Intel Core 2 Solo processorwith 4GBRAM. The error, spatial order, and code execution
time results are in Tables 3 and 4. The fourth order accuracy can be observed for all the examples except for Example 8, and
we believe that the order might be compromised since the selected time step is not sufficiently small, while the simulation
takes too long for such a three-dimensional system.

Example 1. Linear problem in two-dimensions with homogeneous Neumann boundary conditions.
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Table 3
Error, order, and CPU time results of the two-dimensional examples.

Nx × Ny × Nt Error Order CPU Time (s)

Example 1

20 × 20 × 640 3.28 × 10−4 – 0.10
40 × 40 × 640 9.08 × 10−6 5.18 0.45
80 × 80 × 640 2.04 × 10−7 5.48 2.57
160 × 160 × 640 9.93 × 10−9 4.36 15.43

Example 2

20 × 20 × 640 2.09 × 10−3 – 0.25
40 × 40 × 640 9.27 × 10−5 4.49 0.83
80 × 80 × 640 3.00 × 10−6 4.95 5.16
160 × 160 × 640 1.48 × 10−7 4.34 29.68

Example 3

20 × 20 × 640 2.02 × 10−4 – 0.09
40 × 40 × 640 1.21 × 10−5 4.06 0.35
80 × 80 × 640 4.72 × 10−7 4.68 2.49
160 × 160 × 640 1.61 × 10−8 4.87 14.99

Example 4

20 × 20 × 640 2.13 × 10−3 – 0.20
40 × 40 × 640 6.24 × 10−5 5.09 1.08
80 × 80 × 640 1.52 × 10−5 2.04 5.03
160 × 160 × 640 7.96 × 10−7 4.26 27.92

Example 5

20 × 20 × 1280 2.31 × 10−4 – 1.52
40 × 40 × 1280 5.35 × 10−6 5.43 4.74
80 × 80 × 1280 2.47 × 10−7 4.44 23.73

Table 4
Error, order, and CPU time results of the three-dimensional examples.

Nx × Ny × Nz × Nt Error Order CPU Time (s)

Example 6

20 × 20 × 20 × 640 4.93 × 10−4 – 17.33
40 × 40 × 40 × 640 1.36 × 10−5 5.18 96.14
80 × 80 × 80 × 640 3.06 × 10−7 5.48 872.26
160 × 160 × 160 × 640 1.49 × 10−8 4.36 9670.20

Example 7

20 × 20 × 20 × 640 1.99 × 10−4 – 14.66
40 × 40 × 40 × 640 1.20 × 10−5 4.05 85.02
80 × 80 × 80 × 640 4.69 × 10−7 4.67 824.93
160 × 160 × 160 × 640 1.60 × 10−8 4.87 9349.11

Example 8

20 × 20 × 20 × 1280 2.53 × 10−4 – 351.10
40 × 40 × 40 × 1280 5.53 × 10−6 5.52 3120.31
80 × 80 × 80 × 1280 5.53 × 10−7 3.32 38662.07

We consider a linear reaction–diffusion equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= 0.2
(

∂2u
∂x2

+
∂2u
∂y2

)
+ 0.1u, (x, y) ∈ Ω = {0 < x < 2π, π/2 < y < 5π/2};

∂u
∂x

(0, y, t) =
∂u
∂x

(2π, y, t) = 0;

∂u
∂y

(x, π/2, t) =
∂u
∂y

(x, 5π/2, t) = 0;

u(x, y, 0) = cos x + sin y.

(54)

The exact solution of the system is

u(x, y, t) = e−0.1t (cos x + sin y). (55)
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Example 2. Nonlinear problem in two-dimensions with homogeneous Neumann boundary conditions.

We consider a nonlinear reaction–diffusion equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= 0.2
(

∂2u
∂x2

+
∂2u
∂y2

)
+ sin u, (x, y) ∈ Ω = {0 < x < 2π, π/2 < y < 5π/2};

∂u
∂x

(0, y, t) =
∂u
∂x

(2π, y, t) = 0;

∂u
∂y

(x, π/2, t) =
∂u
∂y

(x, 5π/2, t) = 0;

u(x, y, 0) = cos x + sin y.

(56)

Sincewe do not know the exact solution, we treat the calculated solution for a very fine spatialmesh as the exact solution.
The fine mesh is 1280 × 1280 × 640, (Nx ×Ny ×Nt ). The cIIF scheme took about 12.5 h to calculate the solution on this fine
mesh.

Example 3. Linear problem in two-dimensions with homogeneous Dirichlet boundary conditions.

We consider a linear reaction–diffusion equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u
∂t

= 0.1
(

∂2u
∂x2

+
∂2u
∂y2

)
+ 0.1u, (x, y) ∈ Ω = {0 < x < 2π, π/2 < y < 5π/2};

u(0, y, t) = u(2π, y, t) = 0;
u(x, π/2, t) = u(x, 5π/2, t) = 0;
u(x, y, 0) = sin x cos y.

(57)

The exact solution of the system is

u(x, y, t) = e−0.1t sin x cos y. (58)

Example 4. Nonlinear problem in two-dimensions with homogeneous Dirichlet boundary conditions.

We consider a nonlinear reaction–diffusion equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u
∂t

= 0.1
(

∂2u
∂x2

+
∂2u
∂y2

)
+ sin u, (x, y) ∈ Ω = {0 < x < 2π, π/2 < y < 5π/2};

u(0, y, t) = u(2π, y, t) = 0;
u(x, π/2, t) = u(x, 5π/2, t) = 0;
u(x, y, 0) = sin x cos y.

(59)

Sincewe do not know the exact solution, we treat the calculated solution for a very fine spatialmesh as the exact solution.
The fine mesh is 1280 × 1280 × 640, (Nx ×Ny ×Nt ). The cIIF scheme took about 11.6 h to calculate the solution on this fine
mesh.

Example 5. Linear problem in two-dimensions with inhomogeneous Dirichlet boundary conditions.

We consider a linear reaction–diffusion equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t

= 0.1
(

∂2u
∂x2

+
∂2u
∂y2

)
+ 0.1u, (x, y) ∈ Ω = {π/2 < x < 5π/2, 0 < y < 2π};

u(π/2, y, t) = u(5π/2, y, t) = e−0.1t cos y;
u(x, 0, t) = u(x, 2π, t) = e−0.1t sin x;
u(x, y, 0) = sin x cos y.

(60)

The exact solution of the system is

u(x, y, t) = e−0.1t sin x cos y. (61)

Example 6. Linear problem in three-dimensions with homogeneous Dirichlet boundary conditions.

We consider a linear reaction–diffusion equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u
∂t

= 0.1
(

∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

)
+ 0.2u, (x, y, z) ∈ Ω = {0 < x < 2π, π/2 < y < 5π/2, π/2 < z < 5π/2};

u(0, y, z, t) = u(2π, y, z, t) = 0;
u(x, π/2, z, t) = u(x, 5π/2, z, t) = 0;
u(x, y, π/2, t) = u(x, y, 5π/2, t) = 0;
u(x, y, z, 0) = sin x cos y cos z.

(62)
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The exact solution of the system is

u(x, y, z, t) = e−0.1t sin x cos y cos z. (63)

Example 7. Linear problem in three-dimensions with homogeneous Neumann boundary conditions.

We consider a linear reaction–diffusion equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= 0.2
(

∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

)
+ 0.1u, (x, y, z) ∈ Ω = {0 < x < 2π, π/2 < y < 5π/2, π/2 < z < 5π/2};

∂u
∂x

(0, y, z, t) =
∂u
∂x

(2π, y, z, t) = 0;
∂u
∂y

(x, π/2, z, t) =
∂u
∂y

(x, 5π/2, z, t) = 0;

∂u
∂z

(x, y, π/2, t) =
∂u
∂z

(x, y, 5π/2, t) = 0;
u(x, y, z, 0) = cos x + sin y + sin z.

(64)

The exact solution of the system is

u(x, y, t) = e−0.1t (cos x + sin y + sin z). (65)

Example 8. Linear problem in three-dimensions with inhomogeneous Dirichlet boundary conditions.

We consider a linear reaction–diffusion equation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= 0.1
(

∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

)
+ 0.2u, (x, y, z) ∈ Ω = {π/2 < x < 5π/2, 0 < y < 2π, 0 < z < 2π};

u(π/2, y, z, t) = u(5π/2, y, z, t) = e−0.1t cos y cos z;
u(x, 0, z, t) = u(x, 2π, z, t) = e−0.1t sin x cos z;
u(x, y, 0, t) = u(x, y, 2π, t) = e−0.1t sin x cos y;
u(x, y, z, 0) = sin x cos y cos z.

(66)

The exact solution of the system is

u(x, y, z, t) = e−0.1t sin x cos y cos z. (67)

4. Conclusions

In high spatial dimensions, the compact representation of integration factor approach was found to be very efficient for
solving systems involving high-order spatial derivatives and reactionswith drastically different time scales, which in general
demand temporal schemeswith severe stability constraints. In general, it is difficult to develop cIIFwith high order accuracy,
especially for inhomogeneous boundary conditions. In this paper, we have developed a cIIF method for solving a class of stiff
reaction–diffusion systems for inhomogeneous boundary conditions with fourth order accuracy in space. In this approach,
the stability condition, computational savings, and storage are similar to the original cIIF with second order accuracy.

Although the high order IF method has been presented only in the context of implicit integration factor methods for
reaction–diffusion equations, such approach can easily be applied to other integration factor or exponential time difference
methods. Other types of equations with high-order derivatives, (e.g. Cahn–Hilliard equations with fourth-order derivatives)
may also be potentially handled using this approach for better efficiency. To better deal with high spatial dimensions, one
may incorporate the sparse grid [16,20,21] into the compact representation technique. The flexibility of compact represen-
tation allows either direct calculation of the exponentials of matrices, or the use of Krylov subspace [14–16,22–24] for non-
constant diffusion coefficients to compute their exponential matrix–vector multiplications for further saving in storage and
computational cost. In addition, the presented approach based on the finite difference framework for spatial discretization
could also be extended to other discretization methods such as finite volume [25–27] or spectral methods [28,29]. Overall,
the compact representation along with integration factor methods provides an efficient approach for solving a wide range
of problems arising from biological and physical applications. Given its effectiveness in implementation and good stability
conditions, the method is very desirable to be incorporated with local adaptive mesh refinement [10,30,31], which will also
be further explored in future work.
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